2D to 3D percolation crossover in the resistivity of co-evaporated Al-Ge mixture films

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 162889
(http://iopscience.iop.org/0305-4470/16/12/538)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:28

Please note that terms and conditions apply.

Corrigenda

Langevin approach to the dynamics of interacting Brownian particles

 Pusey P N and Tough R J A 1982 J. Phys. A: Math. Gen. 15 1291-308Equation (2.28) should read

$$
\begin{aligned}
\lim _{\tau \rightarrow 0} \frac{\mathrm{~d}^{3} F(K, \tau)}{\mathrm{d} \tau^{3}} & \\
= & -D_{0}^{3} K^{6}-\frac{3 D_{0}^{2} K^{4}}{N f} \sum_{i}\left\langle\frac{\partial^{2} U}{\partial r_{i 1}^{2}}\right\rangle+\frac{2 D_{0}^{2} K^{3}}{N f} \sum_{i, j}\left\langle\sin \left(K r_{i j 1}\right) \frac{\partial^{3} U}{\partial r_{i 1}^{2} \partial r_{j 1}}\right\rangle \\
& -\frac{D_{0} K^{2}}{N f^{2}} \sum_{i, j, k} \sum_{\alpha}\left\langle\exp \left(i K r_{i j 1}\right) \frac{\partial^{2} U}{\partial r_{i 1} \partial r_{k \alpha}} \frac{\partial^{2} U}{\partial r_{k \alpha} \partial r_{i 1}}\right\rangle .
\end{aligned}
$$

Due to an oversight the third term was missing in the original paper. The correct version of this equation (as above) was obtained recently by JL Arauz-Lara and M Medina-Noyola (Physica A in press) and we are grateful to them for pointing out our error. Starting from the Smoluchowski equation, these authors have also obtained expressions for $\mathrm{d} F / \mathrm{d} \tau, \mathrm{d}^{2} F / \mathrm{d} \tau^{2}$ and $\mathrm{d}^{3} F / \mathrm{d} \tau^{3}$ for a suspension containing two types of particle.

2D to 3D percolation crossover in the resistivity of co-evaporated AI-Ge mixture films

Kapitulnik A and Deutscher G 1983 J. Phys. A: Math. Gen. 16 L243-8
In the figure caption to figure 1 the last sentence should be replaced by: 'The straight line is the best fit for the 2 D regime.'
In figure 2 the vertical axis should be $l(\AA)$ rather than $d(\AA)$.

